Mouse Cytokine Panel 1 (4-Plex)
TABLE OF CONTENTS

Name and Intended Use 2
Principle of the Assay 2
Sample Collection and Storage 3
Important Precautions 4
Do 4
Do Not 5
Kit Contents, Preparation, & Storage 5
Other Required Materials: Instruments and Accessories 6
Assay Preparation 6
Assay Procedure 7
Analyzing a Q-Plex™ Image 9
Appendix A: Plate Washing Method 11
Abbreviated Protocol 13
Plate Diagram 14

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>Catalog Number</td>
</tr>
<tr>
<td>LOT</td>
<td>Lot Number</td>
</tr>
<tr>
<td>⦿</td>
<td>Use By YYYY-MM-DD</td>
</tr>
<tr>
<td>⦿</td>
<td>Temperature Limitation</td>
</tr>
<tr>
<td>🏕️</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>🌞</td>
<td>Keep Away From Sunlight</td>
</tr>
</tbody>
</table>

Manufactured and Distributed by:
Quansys Biosciences
365 North 600 West Logan, Utah 84341, USA
TEL: (888) 782-6797
E-MAIL: INFO@QUANSYSBIO.COM

For International Distributors see:
http://www.quansysbio.com/distributors

For Research Use Only
NAME AND INTENDED USE

Q-Plex™ Mouse Cytokine Panel 1 (4-Plex)
Quansys Biosciences Catalog Number 115449MS

The Q-Plex™ Mouse Cytokine Panel 1 (4-plex) is a quantitative chemiluminescent assay (ELISA) allowing concurrent measurement in serum and EDTA plasma samples of MCP-1, MIP-1α, RANTES, and TNFα biomarkers.

PRINCIPLE OF THE ASSAY

This multiplex assay is based on the 96 well plate sandwich enzyme immunoassay technique for the measurement of mouse MCP-1, MIP-1α, RANTES and TNFα.

These assays use two different antibodies specific for their respective targets. Samples or calibrators are pipetted into wells of a 96 well plate arrayed with analyte specific antibodies that capture MCP-1, MIP-1α, RANTES and TNFα thereby immobilizing them to their locations in the array. After washing away any unbound protein, a mixture that contains biotinylated analyte specific antibodies is added. The biotinylated antibodies complete the sandwich for each specific arrayed analyte. After washing away unbound biotinylated antibody, streptavidin-horseradish peroxidase (SHRP) is added. Following an additional wash, the amount of SHRP remaining on each location of the array is proportional to the amount of MCP-1, MIP-1α, RANTES and TNFα initially captured.

The amount of conjugated enzyme on each location of the array is measured with the addition of a chemiluminescent substrate.
Assay Ranges

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Calibrator Range*</th>
<th>LLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP-1</td>
<td>pg/ml</td>
<td>3000 - 4.12</td>
<td>3.4</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>pg/ml</td>
<td>5000 - 6.86</td>
<td>.61</td>
</tr>
<tr>
<td>RANTES</td>
<td>pg/ml</td>
<td>3000 - 4.12</td>
<td>2.15</td>
</tr>
<tr>
<td>TNFα</td>
<td>pg/ml</td>
<td>3000 - 4.12</td>
<td>3.4</td>
</tr>
</tbody>
</table>

* Actual values may vary from kit to kit. Please see the antigen card included in your kit for specific values.
SAMPLE COLLECTION AND STORAGE

The sample collection and storage conditions are intended as general guidelines. Sample stability has not been evaluated.

Cell Culture Supernates - Cell culture supernates should contain at least 1% fetal calf serum for stability of the proteins. Remove particulates by centrifugation and assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles.

Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at 1000 x g. Remove serum and assay immediately or aliquot and store samples at ≤ -20°C. Avoid repeated freeze-thaw cycles.

Plasma - Collect plasma using heparin as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store samples at ≤ -20 °C. Avoid repeated freeze-thaw cycles.

IMPORTANT PRECAUTIONS

1. Read all instructions before beginning test.
2. For research use only. Not for use in diagnostic procedures.
3. The kit should not be used beyond the expiration date on the kit label.
4. If running multiple kits, a calibration curve must be included for each 96-well plate. The curve from one plate cannot be used to calculate sample values from other plates.
5. Do not mix or substitute reagents with those from other kits or lots.
6. All products are carefully validated, however due to the variability encountered in biological buffers and sample matrices, the possibility of interference or sample matrix effects cannot be excluded.
DO

• Do set up and practice using the Q-View™ Imager Pro or Q-View™ Imager LS before starting the assay.

• Do be exact when setting shaker speed to 500 RPM.

• Do dilute all samples at least 1:2 (one part sample to one part diluent) with the provided sample diluent to prevent false positives, and mix thoroughly.

• Pre-wet pipette tips three times by drawing up the liquid into the pipette and then dispensing back into the original vessel prior to the addition of samples or calibrators to the microplate.

• Do load all calibrators and samples into the microplate within 10 minutes of each other.

• Do be exact with incubation times, particularly the streptavidin-horseradish peroxidase (SHRP) incubation.

• Do be exact when mixing Substrate A and B and mix thoroughly.

DO NOT

• Do not allow the plate to dry out between steps.

• Do not allow the substrate or SHRP to be exposed to UV light, as this may degrade it.
KIT CONTENTS & STORAGE

Unopened Kit - Store at 2-8°C. Do not use past kit expiration date. Do not re-use the kit.

<table>
<thead>
<tr>
<th>Part/Description</th>
<th>Storage of opened/reconstituted material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Plex™ Array Microplate</td>
<td>Arrayed and blocked 96-well polystyrene microtiter plate</td>
</tr>
<tr>
<td>Wash Buffer Concentrate (20X)</td>
<td>Liquid, 50 mL/vial of a concentrated solution of buffered surfactant</td>
</tr>
<tr>
<td>Sample Diluent</td>
<td>Liquid, 10 mL/vial of a buffered protein solution with blockers and preservatives</td>
</tr>
<tr>
<td>Detection Mix</td>
<td>Liquid, 6 mL/vial of biotinylated antibodies in a buffered protein solution with preservatives</td>
</tr>
<tr>
<td>Calibrator</td>
<td>Lyophilized, recombinant antigens in a buffered protein base</td>
</tr>
<tr>
<td>Streptavidin-HRP 1X</td>
<td>Liquid, 6 mL/vial of streptavidin-conjugated horseradish peroxidase</td>
</tr>
<tr>
<td>Substrate A</td>
<td>Liquid, 3 mL/vial of stabilized hydrogen peroxide</td>
</tr>
<tr>
<td>Substrate B</td>
<td>Liquid, 3 mL/vial of stabilized signal enhancer</td>
</tr>
<tr>
<td>Plate Seals (3)</td>
<td>Adhesive strips</td>
</tr>
</tbody>
</table>

- **Unopened Kit** - Store at 2-8°C. Do not use past kit expiration date. Do not re-use the kit.

- **Wash Buffer Concentrate (20X)** - Liquid, 50 mL/vial of a concentrated solution of buffered surfactant.

- **Sample Diluent** - Liquid, 10 mL/vial of a buffered protein solution with blockers and preservatives.

- **Detection Mix** - Liquid, 6 mL/vial of biotinylated antibodies in a buffered protein solution with preservatives.

- **Calibrator** - Lyophilized, recombinant antigens in a buffered protein base.

- **Streptavidin-HRP 1X** - Liquid, 6 mL/vial of streptavidin-conjugated horseradish peroxidase.

- **Substrate A** - Liquid, 3 mL/vial of stabilized hydrogen peroxide.

- **Substrate B** - Liquid, 3 mL/vial of stabilized signal enhancer.

- **Plate Seals (3)** - Adhesive strips.
OTHER REQUIRED MATERIALS: INSTRUMENTS AND ACCESSORIES

In addition to the kit contents listed, the following materials are required to run this assay.

1. Multichannel pipette (20-200 μL) and/or a single channel pipette (20-200 μL) and tips

2. Polypropylene tubes or polypropylene 96-well plate(s) for sample and calibrator preparation
 a. Recommended: Nunc® MicroWell™ 96-Well Plates, Polypropylene, 249944; Eppendorf® LoBind Protein or Genomic Microcentrifuge Tubes, 022431102

3. Q-View™ Imager and Software

4. Microplate shaker
 a. For example: Barnstead/labline 4625 titer plate shaker, IKA MTS 2/4 for 2 or 4 microtiter plates, or equivalent, capable of 500 RPM.

5. Deionized water

6. Microplate washer

7. Graduated cylinder for the preparation of wash buffer
ASSAY PREPARATION

1. Install Q-View™ Software on the computers that will be used for analysis or operating a Q-View™ Imager Pro or Q-View™ Imager LS.

2. Set up the imager. For imager-specific instructions, see www.quansysbio.com/manuals.

3. Set the plate shaker to 500 RPM.

4. Prepare the Wash Buffer: Place 50 mL of the 20X concentrate into 950 mL deionized water, and mix thoroughly.

5. Prepare Calibrator: Reconstitute using Sample Diluent with the volume on the Product Card which accompanies the kit. Allow Calibrator to sit for 5 minutes. Mix thoroughly.

6. Allow Substrate A and B to come to room temperature (20-25°C). Fifteen minutes prior to use, combine 3 mL of Substrate A with 3 mL of Substrate B, and mix gently. **Do not expose to UV light. Store at room temperature (20-25°C) after mixing.**

ASSAY PROCEDURE

Allow all reagents to equilibrate to room temperature (20-25°C) before use and prepare as directed by the previous sections. It is recommended that all calibrators, samples, and controls be assayed in duplicate.

1. Using the previously reconstituted calibrator, prepare an 8-point calibration curve (7 points plus 1 blank) in either polypropylene tubes or a polypropylene 96-well plate.

 a. Pipette 200 μL of prepared calibrator into the first tube or well.

 b. Place 120 μL of sample diluent into the other seven tubes or wells.
c. Transfer 60 μL of the undiluted prepared calibrator from the first tube into the second, mix thoroughly, and repeat the transfer from tube to tube for 5 more points, leaving the last tube without any prepared calibrator. This process is diagrammed below. The undiluted prepared calibrator serves as the high point of the standard curve. The sample diluent serves as the negative.

2. Prepare Cell Culture Supernates, serum, or plasma samples by diluting 1:2 (one part sample to one part sample diluent) with enough sample diluent to have 50 μL per well in either polypropylene tubes or a polypropylene 96-well plate.

 Note: If you anticipate that your analyte concentrations will be greater than the high point of the calibration curves as reported on the product card included in the kit, use the sample diluent to dilute your samples further.

3. Add 50 μL per well of the calibration curve and samples by pre-wetting the pipette tips three times, drawing up the liquid into your pipette and then dispensing back into the original vessel, aspirating 50 μL and dispensing into the Q-Plex™ Array 96-well plate. Load all samples and calibration curve to the plate within ten minutes.

4. Cover the plate with a plate seal provided, and shake on a plate shaker set to 500 RPM for one hour at room temperature (20-25°C).

5. Wash the plate three times (see Appendix A).
6. Add 50 μL per well of Detection Mix, cover with a new plate seal, and return to the plate shaker set to 500 RPM for one hour at room temperature (20-25°C).

7. Wash the plate three times (see Appendix A).

8. Add 50 μL per well of Streptavidin-HRP 1X, cover with a new plate seal, and return to the plate shaker set to 500 RPM for 15 minutes at room temperature (20-25°C).

9. Wash the plate six times (see Appendix A).

10. Add 50μL per well of previously prepared substrate. Wait no longer than 15 minutes to commence imaging.

 Note: If imaging cannot commence immediately, protect the plate from drying for up to 15 minutes by dispensing 100 μL of wash buffer into each well of the plate prior to adding the mixed substrate. When ready to image, remove the wash buffer from the plate and add the substrate.

11. Place the plate in the Q-View™ Imager Pro or Q-View™ Imager LS.

12. Open Q-View™ Software, create or open a project, and click Acquire Image.

13. When using a Q-View™ Imager Pro, set the exposure time to 300 seconds.

14. When using a Q-View™ Imager LS, set the exposure time to 270 seconds and standard image processing.

15. Click the Capture Image(s) button. Users may continue on to Well Assignment while images are being captured.

 Note: Details about these imaging steps are available in the Q-View™ Software Manual viewable at www.quansysbio.com/manuals or within Q-View™ Software under **Support > Manual**.

16. Dispose of all used and unused materials. Disposal of waste may differ from country to country. Please refer to local disposal rules.
ANALYZING A Q-PLEX™ IMAGE

The following summarizes a general workflow for analyzing a Q-Plex™ image in Q-View™ Software. Each of these steps is described in greater detail in the Q-View™ Software and Imager Manual, viewable at www.quansysbio.com/manuals, or within Q-View™ Software under Support > Manual.

1. Acquire or import an image into Q-View™ Software as previously described.

2. Enter the Product Code (found on the Product Card) into the Product Code field of the software.

3. **Image Processing:** Align the plate overlay as follows:

 a. Set the overlay: If using the Auto-Set Plate Overlay feature, this will occur automatically. Otherwise, go to Overlay Options > Set Plate Overlay.

 b. To visualize bright or dim spots, optimize the display using Image Options > Adjust Gamma (does not affect the data).

 c. Optimize overlay alignment: Go to Overlay Options > Adjust plate to pivot the overlay, Adjust Well and Adjust Spot to move individual wells and spots, then Auto-Adjust Spots to automatically snap each circle of the overlay to the nearest spot of the image beneath.

4. **Well Assignment:** Label wells as samples, controls, calibrators, or negatives, and specify their dilution factors. Use Templates to quickly assign layouts that are repeated often, or export the layout as a .csv file.

5. **Data Analysis:** Once you have completed Image Processing and Well Assignment, select Data Analysis. Click Perform Analysis to generate charts, concentrations, and statistics based on optimal regression settings provided by the product definition.

Note: Tips for data analysis are available at www.quansysbio.com/tech-tips. We take great care to ensure that customers have success using our products and services. If you have further questions about running the assay, data analysis, troubleshooting, or our products or services, please contact us at 888-QUANYS (782-6797) or at techsupp@quansysbio.com.
APPENDIX A: PLATE WASHING METHOD

1. Use a program that will aspirate and dispense 300-400 μL wash buffer.

 ![Diagram of aspirate-dispense process]

 Aspirate → **Dispense**
 300 - 400 μL
 Wash Buffer
 3 to 6 Times
 Aspirate

2. Ensure that the plate washer has a program that will not scratch the bottom of the microplate and will prevent plate drying. This is critical to prevent damage to the capture antibody arrays. The simplest method to avoid plate drying is to leave a small, uniform amount (1-3 μL) of wash in the well after the final aspiration, and add the next reagent to the plate as quickly as possible.
3. Leaving a uniform amount of wash in the wells can be accomplished with an automated washer by slightly increasing the aspiration height of the washer head.

<table>
<thead>
<tr>
<th>Process</th>
<th>Distance</th>
<th>Steps on a Biotek ELX-405</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspiration Height</td>
<td>3.810 mm</td>
<td>30</td>
</tr>
<tr>
<td>Aspiration Position</td>
<td>1.28 mm from center</td>
<td>-28</td>
</tr>
<tr>
<td>Dispense Height</td>
<td>15.24 mm</td>
<td>120</td>
</tr>
</tbody>
</table>

no soak or shake cycles are needed

4. Connect the prepared wash buffer to your automatic plate washer.

5. Run 1-2 priming cycles to make sure that the wash buffer is running through the plate washer. When the buffer has run through the machine, the waste will be foamy.

6. To ensure that all pins are functioning, in a spare microtiter plate, dispense 100μL wash buffer and ensure that all pins dispense uniformly, then aspirate and ensure that all pins aspirate uniformly.

7. Prime the plate washer one time before the first wash step. When running the assay, perform the wash 3 or 6 times according to the protocol.
ABBREVIATED PROTOCOL

Preparation

1. Install Q-View™ Software (page 8).
2. Set up the imager (page 8).
3. Set up microplate washer (page 12) and shaker (page 8).
4. Reconstitute and prepare reagents (page 7).

Running the Assay

5. Prepare the calibration curve using the Calibrator and Sample Diluent according to the Product Card (page 8).
6. Prepare the samples with Sample Diluent (page 9).
7. Load the calibration curve and samples onto the plate. Shake for one hour at room temperature (500 RPM) (page 9).
8. Wash the plate three times, add the Detection Mix, and shake for one hour at room temperature (500 RPM) (page 9).
9. Wash the plate three times, add the Streptavidin HRP 1X, shake for 15 minutes at room temperature, (500 RPM) (page 10).
10. Allow Substrate A and Substrate B to come to room temperature, then mix equal volumes and allow the solution to sit at room temperature (page 8).
11. Wash the plate six times, and add the mixed Substrate (page 10).
12. Capture and analyze image of the plate (page 10).
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>